ADHD News & Research

Study: Artificial Intelligence Can Improve MRI Detection of ADHD

A computer model programmed to build comprehensive neural networks out of multiple brain images and datasets can aid in detecting ADHD, according to a new study.

January 14, 2020

Artificial intelligence can significantly improve the accuracy of neural models using MRI brain scans to detect attention deficit hyperactivity disorder (ADHD), according to a study recently published in Radiology: Artificial Intelligence.1

The study, conducted by researchers from Ohio’s University of Cincinnati and the Cincinnati Children’s Hospital Medical Center, centers on the emerging idea of using brain imaging to detect signs of ADHD in patients. Currently, there is no single, definitive test for ADHD — diagnosis comes after a series of symptom and behavioral tests.

Research, however, suggests that ADHD can potentially be detected by studying the connectome — a map of the brain’s neural connections built by layering MRI scans of the brain, known as parcellations. Some studies suggest that a disrupted or interrupted connectome is linked to ADHD.

Most research so far has involved the “single-channel deep neural network” (scDNN) model, where artificial intelligence helps a computer construct connectomes based on one parcellation. In this study, scientists developed a “multichannel deep neural network model,” or mcDNN, where connectomes are constructed based off of multiple parcellations. These multi-scale parcellations came from brain datasets of 973 participants.

The model was also programmed to analyze and detect patterns in the multi-scale connectomes to detect ADHD and identify the most predictive brain connectome features for ADHD diagnosis. The results showed that ADHD detection performance improved “considerably” with the mcDNN model over the scDNN alternative.

“Our results emphasize the predictive power of the brain connectome,” senior author Lili He said to the Radiological Society of North America2. “The constructed brain functional connectome that spans multiple scales provides supplementary information for the depicting of networks across the entire brain.”

The study opens the doors for brain imaging and deep neural networks, or deep learning, to aid in detecting other conditions. “This model can be generalized to other neurological deficiencies,” He said, noting that this mcDNN model is already used to predict cognitive deficiency in pre-term infants, for instance, to predict neurodevelopmental outcomes at age two.

View Article Sources

1 Chen, M., Li, H., Wang, J., Dillman, J. R., Parikh, N. A., & He, L. (2019). A Multichannel Deep Neural Network Model Analyzing Multiscale Functional Brain Connectome Data for Attention Deficit Hyperactivity Disorder Detection. Radiology: Artificial Intelligence, 2(1), e190012. https://doi.org/10.1148/ryai.2019190012

2 Artificial Intelligence Boosts MRI Detection of ADHD. (2019, December 11). Retrieved 2020, January 13 from https://www.rsna.org/en/news/2019/November-December/AI-MRI-For-ADHD